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Entropy and heterostasis

Heterostasis

• Self-regulating processes aimed at stabilizing a cer-
tain target distribution of dynamical behaviors.

• Contrast to homeostatic regulation which aims at sta-
bilizing a steady-state dynamical state.

Maximization

• Maximization of the entropy of neuron firing rate
distribution has important implications

– Uniform usage of all the output activity states.

– Increase of the information transfer between the in-
put and the output states.

• Entropy maximization of neural output activity is lim-
ited by the energy resources available to a neuron.

Constrain on the output distribution

• Fixed average energy consumption
∫ 1

0
p(y)fE(y)dy = µ , (1)

where fE(y) is an energy usage of a neuron as a func-
tion of the output firing rate y

Target distribution

• Entropy maximizer on the finite interval [0,1], and with
the constrain mentioned above, has the following form

pexp(y) =
1

h(λ)
e−λfE(y)

where h(λ) =
∫ 1
0 e−λfE(y)dy , and µ = ∂

∂λ ln(h(λ)) .

.

Learning rules

Neuron transfer function

• Sigmoidal transfer function

y(t + 1) = g(x(t)) =
1

1 + e−(a(t)∗x(t)+b(t))
,

where x(t) is input rate at previous time step.

Learning rules

• Learning rules for the intrinsic plasticity are obtained
by using the gradient descent on the Kullback-Leibler
divergence, between the target distribution pexp(y) and
the output probability distribution py(y), with respect to
internal parameters a and b

b(t + 1) = b(t) + ǫb ∆b̃(t)

a(t + 1) = a(t) + ǫa

(

1/a(t) + x(t)∆b̃(t)
)

∆b̃(t) = 1 − (2 + λf ′
E(y(t + 1)))y(t + 1) +

+λf ′
E(y(t + 1))y2(t + 1)

Stability analysis

• For the slow changes of a(t), therefor ǫa → 0, a solution
of the ∆b̃(y∗) = 0 is a stable fix point of the system if
the following relation is satisfied

a <
1

y∗(1 − y∗)
.
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Simulation
• We have chosen linear dependency of energy

depletion with respect to neuron firing rate

fE(y) = y .

y

x

a, b

• In the case of the single site loop we use the balanced
substitution

x(t) = y(t) −
1

2

Simulation - single neuron

Setup

• Target mean output activity µ = 0.28, thus λ = 3.017 .

• slow learning rates ǫa = ǫb = 0.01

System dynamics
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• Stability analysis along the trajectory shows that
maximal local Lyapunov exponent oscillates between
frozen and chaotic phase.

Simulation - neural network

Setup

• Fully connected network with N = 500 neurons

• Synaptic weights are drawn from

p(ω) =
1

2

(

δ(w −
1

√
N

) + δ(w +
1

√
N

)
)

Firing rate PDFs
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• Output distributions of the two neurons with highest
(blue diamonds) and lowest (red circles) Kullback-
Leibler divergence (D = 0.03 and D = 0.15) com-
pared to the mean output distribution (dashed green
line) and the target exponential output distribution (full
black line).

• Target mean firing rate µ = 0.28, and ǫa = ǫb = 0.01

Output activity
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• Output activity of a randomly chosen neuron in a fully
connected network.

• The target average firing rate, for all the neurons in the
network, is µ = 0.28 (A) and µ = 0.15 (B).
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